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INTRODUCTION

The development of the techniques and application of electromagnetic waves
in the microwave region is progressing towards the use of higher frequencies,
The physical size of the transmission elements employed at present is already
of an order of magnitude comparable with a wavelength, For a further increase
in operating frequency ons could, of course, further reduce the sizes of the
transmission elements. However, one would then be faced with difficult prob-
lems of production due to tolerance requirements., From a practical standpoint,
the sizes of the transmission elements must be in the realm of easy machining
and production, These considerations favor the use of transmission elements
whoise sizes are large in comparison with a wavelength, Because of that the in~
terest in such transmission systems has increased in recent years. Relatively
little is known about such transmission elements., The present investigation
concerns itself with such transmission elements which, as a results of the large
size~to-wavelength ratios, may propé.ga.te several modes,

It is well known that in finite regions, or in waveguides, the electromag-
netic field can be described in terms of a discrete set of characteristic
nodea(l) » Or elementary waves, Each one of these modes for a loss-free guide
has an individual propagation constant which is either a real or imaginary
function of the geometry and the dimensions of finite region, Up to the pre-
sent, most of the applications, and therefore the analysis of propagation,
have limited themselves to such dimensions that only one of the infinite number
of possible characteristic modes has a real propagation consta.nt(z), A1l other
modes have imaginary propagation constants, and therefore within a certain dis~
tance fram their source attenuvate to a negligible magnitude. Under these con-
ditions the waveguide could propagate only one mode, For this situation it has
been shown that there is a complete analogy betweern the single mede guide and
the standard transmission Z!.:‘Lne(3 ”"). This analogy has been exhremely useful,
particularly from the engineering point of view, as it gives an insight into
the waveguide based on the wide knowledge of phenomena in the usual itransmission
lines, The effect of discontimuities in a waveguide can then be considered in
light of the known effect of an equivalent localized impedancea‘) on the trans-
mission line,

It is worth pointing out that waveguides which propagate several modes,
so-called multimode waveguides, have various other applications beside allow..
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ing an increase in the operating frequencies. They offer wide band transmis-
sion sysbems‘(s ), possibility of multiplex operation in a single waveguide,

mode mixing devices, and associated control of the i1lumination of horn aper-
tures, etc. In the present work we do not discuss these applications which
offer a wide and diverse field for research., We limit ourselves to a particu~-
lar problem which at the moment is of great practical and theoretical interest.

A basic property of the chmeteristic modes in a uniform c¢ylindrical
waveguide is that of orthogonality; hence there is no energy interchange ve-
tween the modes 6 « A uniform waveguide allowing the propagation of several
modes would then act like a set of independent traasmission lines 2) s bt in
the region of a discontimuity in the waveguide, the orthogonality of the modes
breaks doom. In the region of the obstacle, then there would be an interac—
tion between the modss, which would appear as cross coupling of the otherwise
different and independent transmission lines.

The problem of propagation in-a waveguide is basically a field problem
and, as such, the scattering of waves is the physical aspect which underlines |
the consideration of an obstacle, Having detemmined the scattering properties
of an obstacle, we can then lock for other representations which would have
advantages for specific considerations., It is questionable whether the repre-
sentation of a multimode guide by equavalent transmission lines and obstacles
by equivalent localized impedance network has the same merits as in the case
of a single mode guide, The theory of multiple transmission lines, coupled by
localized multiple networks is far from being highly developed and widely
knmm(n. Nevertheless, the engineer is used to thinking in terms of circuits
and impedances, and such a representation might faciIlitate the formulation of
a physical piture of the phenomena involved. With this in mind, the basis for
the equivalent circuit representation will be considered, and application.will
be made to the particular problem of a slot radiator in a multimode guide,

In considering the problem of a general obstacle we limit ourselves to
general considerations of the scattering matrix, ZAssuming that we know the
scattering matrix, we can investigate some. of its properties on the basis of
general laws thal we know about the fields. The detemination of the scatter—
ing matrix itself invdives the solution of the boundary value problem represent-
ed by the waveguide with the obstacle in it.

These boundary values problems in most cases are rather tedious. In partics
ular, we are actually faced with two problemssp

-2- |
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a) Given a certain source distribution over the obstacle, what would be the
fields set up by it, that would satisfy Maxwell's equations and the prescrib-
ed boundary conditions; b) Given a certain fiéld propagating in the wave-
guide, what would be the induced sources on the cbstacle. In general, we are
given a certain incident field, and to find the effect of a discontimuity we
have to determine first the induced sources, and then derive the scattered
field produced by these induced sources.

We consider in detail the problem of the slot readiator in a multimode
waveguide, The effort involved in solving the above mentioned two boundary
value problems is compensated by the wide applications and advantages of
slot radiators. In this work an approximate solution to both of these prob-
lems is presented., It is shown how to obtain both the amplitude and the dis-
tribution of the induced voltage in the slot as a function of the exciting
field in the guide and the slot geometry. This step in the theory is ex-
tremely important as it facilitates the solution of a great many problems ag-
sociated with slots, In the single mode guide it has been possible to cir-
cumvent solving this aspect of the problem by making judicial assump‘bionsg(é)
in order to simplify the specific problem. The ampiitude cf the induced volt-
age as a function of the exciting field has not been determined explicitliy.
For the case of a single mode guide one could circumvent it by the use of an
energy balance relation(é). Although in Stevenson's work(9 ) an expression
is given for the amplitude, it involves an infinité series which is difficult
to evaluate, |

The energy balance relation emplayed in the si mrle mode guide theory in-
volves a knowledge of the power radiated by the slo'b? « To determine that,
we must know, besides the induced voltage which can be eliminated in the sin-
gle mode case, the radiation resistance. For the radiation resistance the
usual procedure has been to employ the extermal impedance of the slot, This
impedance relates the voltage across the slot to the complex power in the ex~
terior region. Under the assumption that the slot is in an infinite perfect-
ly condncting plane this impedance can be evaluated for a given Etang in the
slot, There are several ways to clo this and they have been discussed in the
literature@)), Often the value employed is the onme obtained by the applica-
tion of the Babinet Principle(lo). For & slot in the wall of a waveguide,
this value is then multiplied by a factor of ¥wo on the basis of a physical
argument, This argument states that, since the waveguide limits the radia-

tion to one direction, the radiated power will be doubled.
- 3 -
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Coiputations on the basis of the above value lead to & rather crude approxi-

metion, There is a disagreement of about 35 percent between the theoretical re-
sults and experimental data.(s). This is hardly surprising as this procedure
neglects the different nature of the fields inside the waveguide, These fields
have a specific and definitely different nature than the fields behind a screen
in free space. If these assumptions are crude approximations in the case of a
single mode guide, they would be werse in the case of a multimode guide with
its more complex structure of fields., Further, in such a multimode guide, even
if one would be satisfied with this procedure, the circumvention of the requir-
ed knowledge of the amplitude of the induced source is probably impossible.

It is evident therefore that a better approximation is definitely needed. The
theory should also provide an answer to the induced voltage problem.

In this work an analytical method developed for wire antennas(ll) has been
extended and applied to the slot problem. The method is in principal similar
to the one outlined in Stevenson's 4 work, but it yields answers in closed
form directly applicable., In fact, the results are applied to the multimode
guide and give very satisfactory agreement with experimental data. We consider
the physical differance between the far zone. fields of a slot in an infinite
plane, and a slot in the wall of a waveguide, The far zone fields of a slot
in an infinite plane satisfy Sommerfield's radiation conditions on both sides
of the slot, This tells us that the field amplitudes go to zero as the obser-

vation point moves out to infinity. In fact, it prescribes how fast the fields '

have to go to zero., For 1 e case of a slot in the wall of a waveguide this is
true only for the outside region; inside thewaveguide the fields do not dew
crease in amplitude. The radiation condition on the fields is that there will
be no reflected waves coming from infinity. The far zone field is just the sum
of 21l the freely propagating modes in the waveguide, We present, therefore,
such a description where we can take account of this physical information
directly.

It has been customary in the analysis of slots(6’9) to assume that the out—
side wall of the waveguide forms part of an infinite perfectly conducting plane.,
This assumption may be one of the reasons for the discrepancy between the theo-
retical and experimental results, In the present work this same assumption is
made, but the theoretical approximation it involves is directly evident. This

point is further discussed in Chapter IV of the text,
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Qutlined below iz the approximation method to be followed here, We em-
ploy asymptotic approximations for Green's functions in the outside and inside
regions, In terms of these approximated Green's functions we express the scat-
tered fields in both regions. To match the fields across the slot we apply
the boundary conditicns. This leads to an integro-differential equation for
the induced sources. From this equation we get a function which is analogous
to an admittance function. An approximate evaluation of this rather compli-
cated function is done, It yields as its major part a value that corresponds
to external impedsnce obtained from Babinet's Principle or otherwise. We also
get a second term which can be looked upon as a correction term, corresponding
to the internal impedance, This correction term, as should be expected, is de-
termined by the freely propagating modes that compose the far-zone field., It
is interesting to note that, applying the value of the radiation impedance com-
puted here to the case of a single mode guide gives good agreement with experi-
mental dats, )

On the basis of the computed induced voltage in the slot, we solve the
second part of the boundary value problem. This inwvolves finding the scatter-
ing matrix in the multimods guide, which is done by applying the Lorentz theo-
rem in & fashion similar to the one outlined in Silver?!s book' ‘. The exten-
sion of this to the multimode guide presents no serious difficulties, Finally
the theoretical values are compared with experimental measurements and very
good agreement is observed.

Many of the experimental results on the scattering of a slot in a rectangu-
lar waveguide propagating TE,q and 'I‘E20 modee, which are used for comparison,
were measured in the University of California Anterma ILaboratory by W. Kummer
before this theoretical work was begun, The writer also took same additional
data, using the experimental methods for the excitation and seperation of TEp,
and TEyp modes worked out by Kummer,

A e i e o ¢ oo e i e = e e e S e - e
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CHAPTER I

GENERAL CONSIDERATIONS OF OBSTACLES AND DISCONTINUITIES

We confine the present discussion to waveguides of arbitrary, but uniform
cross section. The guide walls are assumed to be perfectly conducting, and
the interior of the guide is filled with a lossless medium of dielectric con-
stant and permeability. Under these conditions, one finds that the solution
of Maxwell's equations can be presented by a set of transverse modes of two
kinde, For one, Ez = 0 and for the other, Hz = 0 and they are called trans-
verse electric (TE) and transverse magnetic (TM) respectively“’) For
TE modes

(1.1)

J& - (1.2)
where Ulxy) is a solution of the differential equation

Ve Ut Koy W=0 | (1.3

4
Bon* (K= &) 5 &= wlue

lSm are the characteristic values associated with the set of orthonormal

TS

&,



eigenfunctions Uy, (xy)} corresponding to the cross section of the guide, Their
determination allews for & multiplicative constant, which we shall choose so as
to obtain a convenient normalization., We can treat in a similar mammer the TN
modes(6) . .

If we normalize all the modss so that the power flow P across a cross sec-
tion of the guide is unity we have

P=~é] ]Re(g.xti)-ndo'=1 (2.1)
i f

Substituting from (1.1) and (1.2) for the propagating modes § = jB we find

P= :.Re.” @k (xiz) X H ]} @s)
v 1

Ps f’,ﬁgzﬁr / ] (vy) do’ 7
hence I

mn

=l o

as the eigenfunctions are normalized so that

jf(vu)ada%f

ad

Let us denote now waves propagating to the right and left with a superscript!

-7 -
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of (=) and (s) respectively

to right to left
- - - - + <+
= (xv)e? < ¢ E = (xnets ¢
) - . .
g et L ph g€ O

Bvery field in the waveguide can be represented as a linear combination
of these orthonormal base vectors-ei and hi'

For the TE modes the vector functions ¥ (xy) and ¢ (xy) are given be-
low exp]icitly.

+
=-4 T Lt 287 d W
e ChEE S5
* t
4”3\/;5 N L3
oy
" 2
%3 = O yz} “/)“ﬂc' Ky Uy (1.8)

Suppose we have an incident .wave coming from infinity in region 1 (Fig. 1
page 69) and an obstacle at z = O of known scattering properties, We denote
vy sl al the amphtude of the kth node in region 2 due to the ith mode of
the amplituds 31 incident on the obstacle in region 1., This means that Sﬁ
for exmmple is the scattering coeficient giving the transfer of energy from
left to right of obstacle. If & wave of mode 1 will be incident on the ob-

stacle in both regions 1 and 2 with amplitude a; and a- respectively, the
fields due to it will be for =< O



E'(xvz)= @fe; +D, Sy aiel +) SH ale,
. _ K=1 K=l
Htxvyz)« aj-4 Zs aje’ *ZS Y (1.9)

and for >0

i T + o 2 - 22 _a2 -
E(Xvz)=aiei+) S A€ +3 Sy A€,
b Ksi
H(xvz) - aih RN |
(1.10)

We obtain & similar expression for H- except and hy replaces e;.

In the case of an arbitrary incident field the total field will be the
su of the contributions of all the modes in the incident field, We can write th{

for 3<0
' .E;.'(XYZ) y z ; [&KQ"-S{;-v(S:" dl’\ + S:'l a%.)@;] .(1'11)
i/ t/
‘ ad for s> 0




e &= 2 + 2 i 22 2 -
_E_e(xyz)=z Z [Sixdzg.d' (Sa@i+ S di)e ] (1.12)

PV 474

and similar expressions for H,
Since we can &lso describe the total fields in terms of the orthonormal
base vectors e;; hy we can write

E¢x¥yD) =T ;¢ + b/ el
3

Hixv2)=3 a, b + b h @.33)
{
and
E,(xyz) = 2:_’. G‘a). e:. 3 bfgfi
e, + 2, -
Hy cxvn = 3 athi s B
(1.18)

comparing (1,13) and (1.1}) to (1.11) and (1.12) we get

P 8 s M S ] A S e N s a o it i . DT T = e e s
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' 1] 1 ar 2
be=2. S &+ S &

e 2 ! ae e '
b, = Zl: S &i+r S AL | (1:25)

Upon changing the order of numbering so that index 2 on'top starts after index
N on bottam, where N is the number of propagating modes we can write in matrix
fom

(B) = (8) (A) (1.16)

where (B) and (A) are the matrices of the reflected and incident amplitudes
respectively. Therefore by definition ) (S) is the scattering matrix. We
investigate now the properties of the element Sik of this matrix,

To investigate the properties of Sik we consider a region that includes
the obstacle and is bounded by the inmer walls, and two cross section at
£ =2<0and 2z »z,>0, Since we consider a source-free region, the diver-
gence of the field vectors is zero. Comsider two fields E®), B®ang p(®) (@)
of the same frequency, that satisfy Maowell's equations. Then we can apply the
Lorentz theorem which states

o (n) (7)
rao-=
(% 4"~ (6 x#") ndr=0 an

ao

In this region we apply the theorem to two fields due to particular modes
set up in particular ways to give the desired relationships between the elements
of the scattering matrix (S).




Consider first the field due to mode 'm' of wnit amplitude incident from
left and mode 'n' of unit amplitude incident fram right, and express these fields
by expressions similar to (1.i1) and (.12). Then substitute the above in (1.17)
and make use of the normalization and orthogonality properties of the eigenvec-
tors e, and % to obtain

2(Spn~ S )* [[(E™XH" - £'x8™)-mde=0" )
mns

We consider now three general cases,
Case & - Lossless obstacles (perfectly conducting) in a closed waveguide.
In this case the boundary conditions on B( )H(m) and x(“)n( n)

n x = 0

=

(1.19)
B+ H =0

4011 us immediately that the integral in (1,18) vanishes, Hence 821 = SJg.

Case b - Lossy obstacles (dielectrics etc.) in a closed waveguide,

In this case we change our volume and surface integration. The integrals
over the perfectly conducting part of the wall vanish as in case a, and we are
left with an integral over outer surface of obstacle, We apply the same theo-
rem to the volume of the obstacle, The.surface of integration will now be the
imer sirface cof the cbstacle, see Fig, 2, page . We have then

/ (f //(”) £ X//)ma/f‘ //‘-"470-/”""0 (1;20)

) mner Surface

and the integral over imner surface vanishes, Now, since in expression (1,20)

only the tangential component of E and H contribute, and by the boundary con-
ditions we know that the tangential components go over cantimuously across the

boundary, we have

Finside ® Foutside (1.21)

e —— e <& - - i e Mo Ry e . < S ——— i TSGR < e T L 1
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and therefore we are lefit with
1 | .
2 - s‘rfn « 0 (1.22)

in this case alsc,

Case c¢ - Radiating Obstacles ~ Slots in Waveguide Wall
In this case, applying i’ = theorem, we will be left with and integral
over immer boundary of the slot,

./a-' "'ft—/) zdr : (2.23)
Sio7

We use now a similar technigue to the one umed in case b, We apply the
Lorentz theorem to the outside region, see Fig, 3 page . We have now

/_f'ﬂ_?dv’+f Lour A +f;-/'_?dr= o

SonEeE & StoT oG (1.24)

As in case a, over G the integral goes to zero due to conditions (1.19). We
consider now the case where the Radius of the sphere R goes to infinity,.

J£mdr = G [rpde (1.5)

and as Fisa cambination of the radiation fields due to the respective modes,
it will satisfy the Sommerfeld rediation conditions, We obtain then

ﬂ. Lvpdor = O
SPHERE

amd consequentliy

- 13-
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./r, our wdr = O (1.26)

Stor

By the same argument about the continuity of the tangential component as in
case b, we see that

/f;’ mde = [ £, mdr'= o (1.27)

r (d

hence we conclude the symmetry of the respective elements of (S) for any general
obstsacle, ‘

Applying the same argument as outlined in deriving (1.18), to the field due
tomode m and n both incident from either left or right, we get the requir-
ed relation for all the necessary.elements, This establishes the symmetry prop-
erties of the scattering matrix S. ;

For lossless obstacles we can also show that the matrix (S) will be uni-
tary(®), That is

> vaskl = dyi

K= (1028)

where

3 . {0 For v i
Vo 11 Por v=i

This can be done by applying the theorem of couservation of energy. Expressing
the fields due to any particular mode by expressions similar to (1.11) and
(1.12) and substituting in the expressions for Poynting's vector, we obtain the
desired result, ’

-1 -
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BQUIVAIENT REPRESENTATION:

If we 2re to look upon the waveguide as a set of transmission lines; we
must be able to remresent the discontinuity by the impedmce matrix (2), where
(Z) relates the equivalent voltages and currents as described in the literature
through Cam's law, (V) « (Z) (I). Since the system is bilateral, linear and

isotropic, the matrix Z will have to be symmetrical, i.e., Z;, = 2% ,. ir
(S) 1s the scattering matrix then the impedance matrix can be given by(2)
-1
Z =(1)-(8)) ((W+(S) (1.29)

It can be readily shomn™ that if si.k =Sy then zik - zki and conversely.

The symmetry of (S) has been proven above for any arbitrary kind of ob-
stacle, This establishes, then,the validity of representing a multimode wave-
guide wi th discontinuities by a system of transmission lines with certain coup-
ling netwoxks between the lines.

To £ind the equivalent representation we have to find the matrix (S).
This involves solving the boundary value problem, Then fram (S) and (1.29) we
obtain the matrix (Z)., We proceed now to the solution of the problem of an

obstacle in the form of a narrow slot radiator in a cylindrical waveguide,

"rit.e Z= I."lll, post multiply by N, use symmetry of L and M to obtain symmetry
of Z.

-15 -
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CHAPTRR I1

THE INDUCED SOURCES

To campute the voltage induced in a slot cut in the wall of a waveguide
we have to consider two different regions. One is the inside of the waveguide
and the other is the external space, bounded by the outer walls of the wave-
guide and a sphere at infinity. The slot is common to both regions, and the
solutions for both regions have to be matched in the slot,

Starting out with an arbitrary distribution of electric field in the slot,
we determine the vector potential of this source in both the outsids and inside
regions, The vector potential is expressed in terms of Green's functions for
the two regicns., For these functions we employ asymptotic approximations dis-
cussed in Chapter IV, Having determined the vector potential we can find the
associated induced magnetic fields in the two regions, The expression for the
fields will depend, of course, on the electric field in the slot. Applying

. the boundary condition on the contimuity of the tangential component of the
magnetic field across the slct, we get a condition on the arbitrary " sources®
. in the slot, This condition determines the proper induced sources as a func-

tion of the geometry of the slot, waveguide, and the incident field. The in-
cident field cames in, as the tangential component of the magnetic field inside
is the sun of the induced (scattered) and incident fields,

FORMULATION OF PROBLEM

Consider a cylindrical waveguide and a slob cut in the wall, If the slot
perturbs the current distribution that would exist on the wall of the guide for
& certain given electromagnetic field inside the waveguide there will be a leak-
age of the inside field to the outside, We then say that there is radiation
through the slot in the wall., To determine the radiation of the slot a basic
problem is that of finding the field excited in the slot, given the fields in
the enclosed region before the slot was cut out, let us consider a slot in the
top wall of rectangular guide that is cut parallel to the z direction. The
- slot and the coordinates are shown in Fig. L. In formlating the problem, we

followr the procedure of S'bevenson(9).
We have to consider two regions, one inside the perfect conductor, and one
outside, Assuming a time dependance of the fom er t’, and that the two regi




am filled with the same dielectric material, we will hsve for both regions
VXE=-Juut

where F and H are the electric and magnetic field vectors respectively.
As there are no sources in the region we also have

V. .E__ =0
(2.1a)
V-H=0 .
If we take the curl of the second equation in (2.1) we have
i VX T % t_—i-=-v’fg+v.v._r_1=awGVX§
| (2.2)
By (2.1a) and (2.1) this reduces to
- RH = o (2.3)
where 2 2 w?
RE:wue = 5

let us now consider & rectangular waveguide, in which we have a system of
rectangular coordinates (x,y,z), where the z coordinate is parallel to the gen-

- erating line of the cylinder. For the z component of the magnetic field
h 2y, ¥ Hy + 2y, R%- 0 (2.4)
Y% oy* _Si% ! 2.4

-17 -
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In onder to be able to solve this differential equation we have to find the E

boundary conditions for H, . From Maxwell's equation (2.1) we have %
H, - gw/u- L (3 25 (2.5) i
and
SB;H; =" (%‘; %‘) (2.5a)

8ince in & similar manner to that used in deriving (2.3) we can show that

e . 2
V E+ RE= O :
E+ ®== (2432)

we have
- éaEz - ( az ' Qa)E + é& Ex e 0
a Y B z® . x Axl .
and substitution in (2.5a) gives us
b Hz ! a B Ex E ,
oY 6“’/"" [( bYA R ) Ex* 3% ( 3% %’fY)] (2.462)

which can be writien as

OH ¢  p2 E
b [ Res e 0]
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Thus, on the boundaries of theregion the s campanent of the magnetic field
will satisfy the condition ‘

é_".'.z‘-.._.'_.__ azAe g - Ez o
oY dw,u. [(5-7: + K )E, ST o1 ] (2.7)
QHz

It is evident that in ocur coordinates oY is the normal derivative o'.f' this
cenponent of the magnetic field, On & perfect conductor, the tangential com-
ponents of E are zero, Therefore Ex and E’z are zero on thewalls and
%?'!lz (o) everywhere on the walls except in the slot itself, " ‘
By & well known relation in the theory of Green's functions\~>’ , the dif=
ferential equation for Hz(z oli), with the boundary conditions (2.7), can be
solved in the follaring form ‘

) ’ be 4 / 2 ')y’
Hy = %75!'/1‘.,[;/6‘(’0")[(5?*% )£, (p)‘c)‘)TE;’}]d"‘/‘_(a.s)-

B y repeated integration by parts, this can be transfomed to give

/ 2 2 p , ' gp/ , ,
e (P)2 faug rfﬂa%”’@ ) G(rP) £ (P)- LI £ rh it
(2.9)

*In comection with this point it may be wo rth pointing out that in the case of
waveguide of arbitrary shapes (not cylindrical) we would have to use dyadic
Green functions to describe the fields due to sources. - This is-described in a
paper by H. Lavine and J. Schwringer published by the symposium on electromag-
netic theory (1950). As was pointed out to the author by Prof. S, Silver, this
is due tc the fact that the boundary conditions are then neither of the Dirichle
type nor of the Neuaman type, but a cambination of the two, However, in a cylin
drical waveguide we can descri ;he vector fields in terms of two Green's finc=
tions, as was done by Stevenson\9), In this particular case one obtains.bounda:
conditions for By and H; as given in Stevenson's paper, formulae (3), (L) a
(5). When we limit ourselves to slots that are pard lel to the generating line
of the cylinder, 2s we have done here, only a Neuaman kind of Green function is
necessary, as we have currents in the s direction only. The author wishes to
thank Prof. M, Schiffer for his help in clarifying these points,
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The Green's function G{P,P') should satisfy the following:

a) The homogeneous wave equation except at a single point, P = Pt,

b) radiation conditions at large distances, ) .

¢) boundary conditions on walls of conductors in the relevant (2.10)

geanetrg, i.e, 2,‘6&_ = -0 -3kR )

d) have a singularity of the type E’R"’ when the point of

observation converges on the source point (lim. R 9 0J).

Any function G(P,P') that will satisfy all the above mentioned condi-
tions will be a perfectly good Green's function when multiplied by the prop-
er normalization factor., Further, all the field expressions are linear;
_therefore, we can break up the function G into linear combinations, In
particular we can put

G(P,P!) = G'(P,P') + g(P,P) (2;11)

It G‘(P,P') is known, being the Green's function for some known simple geome
try, then the conditions for the determination of g(P,P') are such as to make
a(P,P') satisfy all condi'tions (2.10) in the region of interest, For free
space divided into two half spaces by a perfectly conducting screen we know
the Green's function rlgcro?ualy. We shall use this function, which is given
by

o,(B,P) = 9%% (2.12

as the function G, (P,P') in (2.11).

This function satisfies condition (2.,10) 'a' and 'd!. We are interest-
ed in finding the Green's function in two différent regions; the region of
space constituting the dutside of the wavegulde and the region of space in-
side it., For both regions we should determine the functions g(P,P!), but
this in itself is a considerable task., In Chapter IV we shall discuss some
approximations for these functions,

- 20 -




THE LiCIDR REGION

- For the inside region we write

-jRR .

e +3(PP) -

) G(FR P) = 5% (2.13)

where g (P,P') is to be a function that satisfies condition (2.10a), is regu-
lar everywheré, and is selecled so as to haveaG(P,P') satisfy the r adlation
conditions inside, (see introduction), and a:‘( P P’- O on the perfectly con~

ducting *.aalls. In terms of the Oreen's function we can, by (2.9) write

JPR 1-%-
Hy (P = S, (I 50 R S5 &, €52 ¢ T

. | +///(§=+?‘);"é‘}, -2 5 Jdx s

(2.14)

where the surface of integration in (2.,1L) is only over the surface of the slot,
let us now introduce a local system of coordinates in. the elot, (ses Fig, 5)
and comsider the electric field components in the slot. In (2.,1L) E.(x,z) will
correspond to B4 (m, £) ana Ey(x,z) will correspond to Ey (7, J R
introduce now the fdllowing assumption about the slot:

a) the wavelsangth is large in comparisom with the sidth, %:4 << 1.

b) The slot is narrow in comparison with its length, % <« 1.

. With these & ssumptions we can safely assume that the variation of E y &
cross the slot will not be appreciable, Becauseof continuity of E . and the
. fact that at the edges this component disappoars, Ee(¥d.,¥)=0'and 21&¢ a,

we neglect E, in comparison with E”tm’ ¥) . It.is to be noted that these
arguments are on the basis of physical plausibility, Theoretically this is an
assumption, It should be noted that it is analogous to the approximations made

-21-
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in the thin wire antemna theory(ll) concerning the current over the eross sec-

tion of the wire,
On the basis of this assumption and the local coordinates vqu‘can rewrite

(2.1}) and get ég R

/(P)-au}l[’/"//(angg)
St g‘(ﬁf’)z’;’,,zdydq ]

In the two integrals in (2.14a), the field component E, (17,S) is
assumed to be contimuocus and to possess continuous derivative, so we can change
the order of integration and differentiation, and write

£, (%) dody +
(2..1L4a)

| - 2\
/9{;(")‘-‘ ZZI/A. (%,,*\"Q )'4? (2.15)

-4k
Ae = zw//f (7.3) -——-Rdﬂzdg +

/ 6 £y 319, & P)dnds ot

We proceed now to transform A P into a form that will lead to a formula
tion that can be solved. This step involves making some approximations, and it
is indeed dangerous to approximate before a differentiation, However, the ap-
proximations that we have to make are with respect to the dependance on the x
coordinate, whereas the di ' erentiation is wilh respect to the z coordinate,

Nevertheless, the validity .f the approximations should bte checked. One way,




of course, is to see that the results are consistent, and how well they. de-
scribe the known physical phenomena,

It may be worth pointing cut that by considering an equivalent magnetic
current on the slot'2), and introducing a magnetic vector potential, we are
led to a resalt similar to (2,15). In doing that we have to make similar ap~
proximations to those described above, and we find then that & 3 of (2.16) is
the ¥ camonent of the vector potential.

Having assumed & norrow slot so that 2d<< A and 2d << 2l s assume
that the variation of the Green's functions nithq :l:s negligible in compari-
son to the variation withS' « We can separate the integration with respect
tot? and 5‘ s and write

. /éé

e v
: A n e / ' / .
/45 :e,,-/;?/ (5) —?——‘d}' 4‘-4'1/(59);‘(/7,{5‘, xyz) df* (2.17)
where V(S) ie by definition the voltage across the slot

-, d
V{§) i{ 5,7 7§ ')a’}' (2.18)

1et us now separate out the principal part of the first integral in ex-
pression (2.16). As we are interested in the fields in the slot itself, we
consider observation points in the slot., For these points we can write

B (5-5%5°

(2.19)

where

fe= (7_7/)21‘ (}_{)2

i A aen——— =




Since we are interested in the fields in the slot itself we have to consid-
er points P very close t¢ P', At P = P' we have & point of singularity.
Separating to exclude the singularity we write

- { $-¢ 7
/ = {{:’z (/:l # [ )
- - S#E

i where £ > © and arbitrarily small,
— Now for ®'C§  we have fram (2,19)

:}i - §-5' = »y/R%- 5%
o S".-. 5—W
dy'=

We get therefore the principal part of &

-2} -

- _KBdl ‘
X €°- ¢t (2.20)
and for j’l> S’
5’" = -1 /Ie'z_f,z
st =5 e /e 52
/ Ld e
4 = VBT gt (2.20%)




| A j=rl, e-‘jke Jﬂe
A;=31r_(v(f) T = Al /zf(}’) dfﬁ(f);a/
' 7 (2.21)
”JL A - /4 f+ a , ’ d ’
L ssan Mt ) VGIgae)As
o5 /,

and integrating A'! by parts we find

A 525 ot o)’
/qz—)]fe'/%f(f”/ﬁz)/ .;1/641‘?,671(2* f’y-fz)/"f/

B */Mzefm)/f;f - jevjeVte se-
g /1”*’(2*/2 ) "" 2L 74V /e e

(2422)

Introducing the boundary conditions at the edges V(+¢) =0, and R = § at
f S by (2.19), we can rewrite equation (2.22),and get, after chang-
ing back the variable of integration from R to ; the following

- 25




'==-ey’(n4,,e,§éﬁf
+ (f/)&:((k+Vl’ £ )/V'-JJW ]ef‘”dy

(2.22')

From (2.19) 2 R 3’ S  scwe get
Sy g

, _‘R ’ J' J'Q
A=-ev($)dnkse o - )dn R (K+TR fz)(r((fr s r/e .23)
L3

Since the first term on the right side of (2.23) is for values in the plane
g ¥ , &@nd of that 1n the slot itself, (i.e. _,'-b) the values of ¢ are
vezy nearly equal to 41 o Further, we have agreed to neglet terms of order

'I" and as the maximum value of ¢ e = 24 we can equate e -jRe to

unity with an exrror at the most of ?xf}_ & 1. We find therefore

A =-2V () Inkm+ y’ / ;ﬂn A =N 7L v(s)3=8 Y)e ®ly
-2 f (2,23°)

and
A,($)= /?*/\f(f)g s, n3) dy’ (2.21)

Let us now multiply this expression by a function;( /7() and integrate

- 26 -
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again from -d to +d with respect to"7 o Also impose the following condition

on £(g).
d
_/a," Fpdm = /

d )
43(”1)& &/mldn = O = £ Rol (2.25)

The function f(nz) governs the distribution across the slot. Such an
exists, and one case is

/(/'()z 774/.,?3

It can be shown easily that it satisfies the conditions (2.25). This function
is directly related to the electrostatic potential over a glot in an infinitely
thin soreen'tt), Hence it relates to the case of infinitely thin walls of the
guide, Other functions / (7)) are possible, such as for the case of finite
thickness, one which relates to the corresponding electrostatic problem. We
get then

-2 £ + P
,45(”-~27V(§)Zﬂ’€d*e”2([ﬂ$‘h7] PLv ()37 ot

where

F L 'y gle <R
U3 ] (- )) oree TGN -g87 E)e™ " ds’
4 J
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and

9 3 ‘!
P [vm.sh_/(w;')é;. (75, ms)ds’

We find therefore, by substituting (2.26) in (2‘.15 )

et
em B [ve5), 3]

in terms of the local coordinates., (See Fig. 5).
This is the field set up inside the waveguide over the slot by an arbitrary
voltage distribution,

(2.27)

m OUTSIDE REGION

Ist us consider now the region outside. The Green's function will be
-J kKR .

G(RP)= a7 B * §elPP)
(2.28)

. _JKE
The function é% e satisfies conditions (2.10) 'a! !'b! and 'df, The
function g, (P,P* } has o be determined so that it satisfies c¢ondition (2,10)
'a' and makes G(P,P!) satisfy condition (2 .10) fe! on outer walls of wave-

guide,
For the outside region we find then that
..L- /
A eﬂ’[‘fq E(q); );(,,z'gf,xyz)da'
(2.29)

A change in sign comes in as we keep the same direction for the normal. Carry-
ing through for A the same transformations as for the corresponding A in

- 28 -
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the inside region we f£inally get
Ae= V(-5 6V (5)57 - RIVEIST o)

and for the scattered magnetic field over the slot outside we find

s)_ _ v
Pe -j'“}“oz”

remrB b vy, £1))

DETERMINATION OF PROPER VOLTAGE

¢ 2
}fen(-%z s ) VU (e s &ALV STy

We impose now the boundary conditions on tangential H in order to get a
condition on the arbitrary voltage distribution we assumed, This will determins
the voltage distribution we are seeking, Tangential H 48 contimuous through
the opening, Hence

o (s) < |
”;( + ﬂjl - /ﬁe (2.&)

4

where H:l is the magnetic component of the incident unperturbed field,
Sthstituting for g(s) from (2,27) and (2.31) we get

/{; and (as_ﬁﬁ)\/'(yn. ,W(as..ﬁﬁz)(?,héff,p)

Eraid,
ot 3 V) - v s K NA E7R)
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(ayz ’“[“/éiq(ﬂ‘w/u (l( ﬁz&()‘
;f;(ﬁ" Rpe R )]
0[ (2.34)
Q:;er _&‘L\r; j'W'W/(( {/5304- /t[y-(?)/ f]])
o Xy

(2.31')

where

FLr 53]y (U R0 % i [ 7 )RR

To solve this equation we expand the solution in terms of powers of X = ‘%_ .
By our assumption of a very narrow slol we have kd = ?—"2 < 1, s
An %’:—Cl is & large number, Hence x is & small number, and expanding

the voltage we write

V() =Va(5) + V(5D + V5 (5% + + )

- -




with the boundary condition that Vi(: €) = 0, In general, it will be suffi-
cient for our approximation to take the first term that is different from zero,
Substituting (2.35) in (2.3)) we get

U AV = o w(¥e)=o
'1("*1‘”—:1;@1?%0'4%(”’ y]j) Y (L) = o

Y +£‘}f= i(;-’-'ﬁ‘-”Z’[W(r),y] ;5<-;[)‘=o

ev—

(2.36)

' This gives us a set of differential equations, with boundary conditions, for
the determination of successive approximations for the induced voltage. The
values we see are functions of the unperturbed exciting field HO and the
function Z(¥ §) . This is a rather complicated function of both the volt-
age and the geametry of the slot, later we shall investigate this function in
detail, :

7= 24
A SLO? OF IENGTH 4= ==

For such a slot we find that the solution for V, which will satisfy the
boundary conditions is

Smky for n even

. =(. 2 (‘ 4
?L'(r) V(r) cos kr for n odd (2-37)

It is to be noted that in this cese of a resonant slot, the functional varia-
tion of the dominant ccmponent of the voltage will be sinuscidal across the
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slot, regardless of the form or camposition of the exciting field H°.

We note however, that the first equation in (2.36) does not tell us any-
thing about the amplitude, which is a major thing we are attempting to find,
However, to get the amplitude we can utilize the particular boundary conditions
of this perturbation method., Let us mdtiply the left side of the second equa-
tion of the system (2.36) by V, and integrate from -4 tosd . We have

Q/“ V' R Yo ¥ )dy /(V‘r "W‘)dy

Integrating both terms by parts we get

VAT , Z,
=»€w[l—4ws dr-[wwg;-[/m v,'dge]

Noting now that

%(*€)=0o and Vi(*d)=0

by boundary conditions, we find that Q = O
Let us then multiply the right side of the second equation in (2.36) by
V and mtegrats over the 1nterval[ 2 + 4] with the result that

f[// X/[f(f))’]j f(;)ff o (2.38)

as X/e(r)S]  is a hamogencous function of 1st degree in Vo(Y) we have

X/[vi(5),8] = C ¥/[P(5), 2]




and wa get fram (2.38)

> e .
‘- [z AL L5 v
= _ (2.3)
f, [Y(5) £ Plsidy &

Hence we see how to determine the amplitude of the excited voltage V, as a
function of H° and Y, .

&
L, s esHds
= Vo

SLOT QF ARBITRARY LENGTH

In this case it is obvious that the equation for V, in (2.36) with the
¢boundary condition Vo(+¢£ ) =0 has only the trivial solution Vo(¥) = 0.
The first tem in (2.35) different from zero will be V, (¥ ). From the sxad
equation in (2.36), where we note that # (Va, S ) =0 as K is linear, we
fird

5+
VAS): G Sin R(5s €) + Lo [ tx) St (540~ 20
° (2.11)
where
J Lt
G = é(&»?kl/// (x)Sm‘(ZI-X) dx )
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Thereiore, for a slot of arbitrary length both the amplitude and distribution
of the induced voitage are dependani, on the exciting field., This shows that
the usual assumption that the distribution over the slot is purely sinusoidal
is valid only for resomant or almest resonant slots (2« A ). In the
general case this assumption is no ionger {rue, =

In the coming investigation of the scattering by a slot, we shall limit
ourselves to resonant slots, In the multimcde guide we shall also have to con-
sider briefly slight changes.in rescnant slot length, that is, almost resonant
slots, As is seen fram (2.10) to determine the ampXitude C, we have to know
the function Y,, The evaluation of this function is a major part of this
theory, and an approximate evaluation will be described in Chapter IV,
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CHAPTER II1

SCATTERING MATRIX OF THE SLOT

Having determined the induced voltage in the slot, Chapter II, we can
solve now the second part of the boundary value problem; that is, given the
voltage over the slot, find the scattered field set up by it everywhere in
the waveguide. Iet us consider a resonant slot a£=".'-’é§ o To compute the
scattering coefficients we apply again the Lorentz theorem, The method is
the same as the one presented in S, Silver!'s book(é) « The expressions are
rewritten here simply for convenience, and to make the derivation of the scat-
tering cosfficients complete.

Consider a waveguide with a glet along its generating line,

In this waveguide we separate out a region of space bounded by the walls
(assumed to be perfectly conducting) and two cross sections at 2z = z,, far e
nough from 2z = 0 so that only the propagating modes are of a significant am-
plitude,; (see Fig. 6). This is a source~free region and we have the following:
given two fields of the same frequency (B,H) and (E!',H!) that satisfy Maxwells
equation, '

¢

/'/(é’x:/'-- é"X/‘/)‘Q?a’a'ﬂZ?@do‘r o (3.2)

Since both E and E'!' are solutions of Maxwell's equations, they satisfy
the boundary conditions on the walls,

. nXE=seO03; nxE' =0

therefa e, the integration over the walls will not contribute to the integral
in (3.1). We are left with an integration over the slot and the two cross sec-
tions at z = Z,
That is,

S/m-?"@df’*/_/.?"@df»ff@da’ = O (3.2)
&I J 32 ‘

and z =Zy o
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We choose now for the field (E,H), the combined field in the waveguide
due to the incident wave and the scattered waves due to the slot. For the
field (E7,H'), we choose a particular unperturbed characteristic mode that
will give us the desired scattering ccefficient. :

For the integral over the cross sectior at 2z = z; in (3.2) we have for
TE modes

"a ! I ?
2] [ 54 £y He)dudy 6.

Suppose now that the incident field is one particw.ar mode of unity ampli-
tude, and that S; 1is the scattering coefficient of ‘the slot. S, , sives
the scattering into mode v due to mode i incident. From the definitions
in Chapter I we can write for the components of (E',H') at z = z. the folw
lowing expressions

- Ldwl Cos BTX odfn}
i Ve B, (A7) ath a ¢

(3.4)

‘- 24p ‘2 -
/a’ ) : m > 52 Cnd ____ﬂm]fxe-atﬁm}
Ve s, #*8Datk a

These expressions give the ’I‘Eno mode with the proper normalization as
indicated in (1.5) and. (1.6). For simplicity let us define a quantity
pn(x) 80 that

e (3.5)
lg(x)= Coa 77X

Veuhs,(f= g2t &




o o m—— o
LI

and rewrite (3.};) in the form
fy = =g /5, (X) e s
dﬁ'nl‘o (X)) e dgm}

(3.6)

With this notation, and in view of (1.9), we will have for the field
"~ (E,H) +the following

5)/:—4'60/0(/6-0()()6’ ‘} ZS (rfw’“) <x)e"P”},
vzt

-jé
He= by A2 00 €™ bt -8, £ el
! (3.7)

Substituting these expressions in (3.3) and carrying out the algebra, remem-
bering the orthogonality of the modes é) , we get

%gﬂ)
] -
9 / <’? " m)/}/f' \

)@é/gnza ‘:(%'Z)a we find

L = 4,
;' “ (3.9)

/?777

If we carry through the same computation at z = z45 we will find that
the integral I , will be zero, as all the waves propagate in the same direc-
tion,.

-3"-
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We have to compute now the value of the integral over the slot. Here we
have

d {
Lo/ [ G- 5t (64~ GH)] dxy (3.10)

By the boundary conditions on the umperturbed auxiliary field, we know
that E} = 0 and E’;c = 0, By owr approximation for & narrow slot we can
neglect E in comparison with E and we get

Z= //f(f,e,,, 2,004 dhdls

(3.11)

On the basis of the assumption of a narrow slot we can neglect the varia-
tion in /”07 (X) over the width of ths slot and write

2 £7 - 1$n
Iy ==(£~fy ) X Jl/ V(e 4 }d} (3.32)

where

o
V(3 =/ E(x ) dx
2d

(3.13)

In Chapter II we have seen that, for a slot of a length equal to half
free space wavelength, we have for the voltage across the slot, from (2.50)

V'(Q) =C, ‘ Losk (3

(3.1L)

where the form cosk 2z 1is independent of the particular configuration of the
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exciting field, The amplitude, on the other hand, is a function of the excit-

ing field and is given by equation (2.39). Hence

¢
C“= Z} /73 C:OSI(}dJ-
A

Substituting He in (3.15) we have

M > g2 Z
Lo (KA

ol (#2a)

Ym

4 .
~-46
é/,‘?(x)e ¢ Coskzdy

as £= % we have ;?j: % and we get

o' - -?%‘?— P (x) Cos 4

[ .

_ 2 2 ¢ ) '4‘5’"}
4--(z-pm)@(x%4 Cosf;e d}
Now by .(3.2)

5+ 2 =2

and substituting (3.9) and (3.16) in (3.17) we find

| Z Y
=R ) & sty BT

(3.35)

(3015‘)

(3.16)

(3.17)

{3.18)



%
‘ 4 -t N
, Z, - 6‘;[(4) = (S)],, [1+(5)] ¢ o e
n
!
S / @) - (s)} . ]
[e-®] = L __Lw SRR
ST of@-e)] j (323)
In (3.23) D[(1) f(S)] is the deterninant of the matrix [(7) -(S)]and ;

[ﬁ) ~(%) ];‘-V is the cofactor(?) of the element (iv) of 1?7)_( )Y
We see that the impedance in (3.22) have a well defined meaning only if[('-/)-(s)'_]
is & non-singular matrix, The case where[(-ﬁ -( S) ] is singular would cor-~ ~
respond to the conditions of melf oscillations in the mode coupling structure, :

In expression (3.21) all terms buy y, @rcreal. Therefore, the phase
of the scattering elementz will be determined by the phase of Ve Our next ‘
step in the theory will be the evaluation of yu. . ¢
-1 -
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CHAPTER IV
EVALUATION OF THE ADMITTANCE FUNCTION

In the preceding three chapters we have outlined the solution of the
boundary value problem in its two parts., We have derived an expression for
the induced sources eq. (2.10) and the scattering coefficient of a slot ,
eq. (3.21). In both expressions the function)fn[ (%), ?] that is defined in
(2.39) enters, For a solution in closed form, directly applicable to numeri-

cal camputation and prectical design, we have to evaluate this function, We
rewirte (2,39) for

4
Yor - [#[p(5),5] - PEOES
-& .

(4.1)

where {see eq. (2.34')

x[Pi) 5] = Jmu (Z(*{u)*jw—/u[/o'*P)*(/o*i '/(h.z)

Iet us first recognize the nature of the fumction Y,. By (2.39) we have

for the amplitude of the induced voltage as a function of the exciting field
H° the expmssion

- L /4(/7,; £) 9 (5)ds

RV (4e3)

We can represent the tangential magnetic field by an equivalent electric
current, In order to demonstrate -the nature of ¥, it is convenient to con-
sider for a moment that the slot is center fed by a Dirac delta function
source, From general network theory (Duhamel's Integral) we know that the
response to this kind of driving current can be defined as an input admittance.




We apply then, at the center of the slot, a driving field of the form

Ae) =7 S(s-%) k)

Substituting (L.L) in (4.5) we find that the amplitude of the induced voltage
is

Ge L

/) (L.5)

We see, therefore, that in terms of circuit analogies the function -Ym takes

the role of an admittance function. It is important to note that aaT would

then be an impedance funciion, and Re("!"') would be the radiation resistance
of the slot,

In evaluating this function let us divide the treatment into three parts.
We shall evaluate each one of them separately., We write

=X*ﬁf

(446)
where by {(L.1) and (}.2)
Y= jra / (s #) p(5)dis @
and
4
Ve jgal, L[ (R RA) p()ds s



and
, é " 2 ‘ '
ﬁzw_é(/g*f@))”(?)df (1s9)

These functions depend on the geometry of the slot and the geometry of
the waveguide. Until now we have not restricted curselves in order to leave
the theory in as general a form as possible, To evaluate these functions ex-
plicitly we have to specify these factors.

We consider a longitudinal slot of length 2 Z that is equal to é
where ) 1is the free space wavelength of the exciting field. Further,‘ﬁe
consider a rectangular guide that can propagate only TE,, modes, and the
slot is cut in a broad face of the guide (see Fig. 6), parallel to the axis
of the guide., With these assumptions the coordinate y will coincide with
the coordinate z of the guide. If we put the center of the coordinate sys~-
tem xyz so that the center of the slot is at 2z = 0, we need not distinguish
between f and 2z anymore, It is to be noted that these assumptions piay a
role mainly in computing Y2 and Y3. As we shall see, Yl is independeni of
guide geometry. This is to be expected as it is determined by the unperturbed
Green's function of free space, (see Chapter II). -

Iet us first consider the function Y,. From Chapter IT we have for U}

3.4 , , By iRy,
ULrsy3T=- )0 R RN P (g K7 (3 %;——/e % (1,210)
-l ;

We make now same simplifying transformations. Iet us re-state the assumption
that the slot is narrow, With an error of order kd&1l we can vrite from
(2.19)

gz/;-é'/ (4.11)

This is equivalent to saying that we shall integrate along the center line of

- Ll -




the slot, In doing so we are bound to pass a singularity point at 2z =z',
For this reason we had to take the integral in (2,17) in the principal part
sense, With the assumption (b,.l]i) we can write

R )22k 3-5/ (412)

Substituting {}.12) in (4.10) and noting the signs we get

- 3 o If . "j‘g‘}') !
2//;’(}))]‘4:&:8#9 J)prhrle d

L, -i4G'3)
{&2‘07)(? Yl e#'03 %G (1.13)

U
We have to compute 5-{'-}6 WwW however, we note that by the sepera-
tion in (}.13) both integrals are regular, and we can interchange differentia-
tion with integration, Also note that we differentiate with respect to 2z
and integrate with respect to 2!, Carrying out the differentiation and ree
membering that by boundary conditions we have )0( z [) S0 we get a convenient
- ) 3t . .. ” "
expression for Ul ﬂ} J ] « Noting further that in our case we have (.l):q

and that P+ %= o , PR =0 , we finally get the rather
simple fom .
, -bRrg) [ R (€3
V74 VAT ’ie + i‘é’y 412
*4 £ 2 (4e13)

Substitubing (L.1L) in (L.7) we get

*Particulars on this transformation are given in appendix (2),
1S -




Y, = s g_/{&s?[%—r + _f_c._..___./da. (L.15)

where

In our case 21 -%- we have k[-rg-. We can write therefore
cos ks = sin k (£+z)-sin k (f-—z)

Changing variables, by substituting k (£ + z) = t in the first part of
(4.15) and k(£ - z) = t in the second part of (L.1L), we can rewrite Y; as

" follows 2
2 ‘ _jt
7% z (L.16)

but

-t
Sinte” = Sntast- fSint=Ffsimet-y (7-Cos 28) ]

substituting now 2t = x we find

=G +4 B == Dy (zm)- { == 7 (27)
% =6 ‘/“” Kz (117)

From {L4.16) and (l;,17) we find, substituting the value of q and k .%
(c velocity of light),

- 16 -
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Y= G +3 Bi= ‘cj;,. Di,(ZTT')‘é"C;"‘L-Tr St (z1) (4.18)

where 8j(x) and Di(x) are the sine and cosine integrals, that is

X .

Do/ 1=Cest

Considering only the resistive part we can see that Y7 corresponds to
the result usually employed for theadmittance of a % s10t(65?), The value
employed is the external impedance of a slot in a perfectly conducting plane,
For this part of the radiation resistance of the slot we have from (}418)

e = 47 (L4.19)
Rs*3 Di (277)
Now, for a half wave camplementary wire antenna we have (15)
o X O = .20
By=Y & 7o (2m)=73.290 (4:20)

Comparing (L4.20) and (}.19) it is evident that

-7 -




£ U .
’65'=4:(’6{ ‘2.— (he21)

We see now that Y7 gives us a value corresponding to the slot as an
analog of its ccomplementary wire antenna, » It can be considered as the first
approximatien in our theory. The other terms Y, and Y3 of (L.6) will give
us correction terms to add to this first order approximation. Iet us now con-
sider the temm Y,.

From ()4.8) we see that to determine Yp we have to find the function
ﬁ{‘wf)ﬂ' » By the discussion in Chapter II and equations (2,26) and 2,13)
we have

4

. .

f-,.-;_? i el o I
[peos é-% 7,005 1) 0 (1.22)

—~0

where the function ,-’(’7??' ,»,i',ﬂ') is the one intrsduced in (2.13). As indicated
before, finding an accurage expression for gy would be a very difficult task
in itself, We are interested in Y, as& a correction to the basic term 71j,

and one which will enable us to take account of the difference between the ra-

diation fields in the interior and exterior regions., This difference was poinfe

ed out before, and one should expect it to be of importance in the phenomena,
With this in mind we lock for an approximate expression for g;(z,z'),

To find an approximate expression for g3 let us note that we 'can easily
find the Green's functions for the inside of a eylindrical waveguide in terms
of an infinite series, We can write for the Green's function(3

Gxgyxyy) =5 mtnlXY) W (XY o ml3-5|

mz/ =2 In (L4423)
The functions ¢ ,(x,y) are the eigengunctions of the equation
Zz
K¥=0
vy (L.2L)

]

i
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for the particular cross-section of the guide, with the boundary conditions

220 o ixg=o a2

corresponding to the case of TE or TM modes., The (), are the propagation

constants and o,, the nomalization constants of the mode function ‘V (x,y)
defined so that

S/ o ) Jde =/ (1.26)

comparing now (1,.23) and (2.13) we write
B Wn (XY) $n (X)) €,11-4] -Re
5 R0 ) S L S g
S e p
2, ~2 oo ar et (h.27)

It is well known that the (4 for all modes from 1 to N, where N is a finite

muber depending on the cross section of the guide, will be imaginary, For all

modes of index n > N the ' n are real, and they represent non-propagating

modes, let us now break up the sum in (L.23 into two, and write

6((’,("):2’ <x3””’"ﬂ 503-31 +
ms=/

~2 0m
Y o tnOg) o O 373
m=Nel =& & (1.28)




Consider now the asymptotic form of G(P,P') as the observation point goes to
p@m” G(Pp) J;"” Z d.m f/’m(x#) '7441()(?') épm\a b |

_Zéﬁm

+Z °‘m %(X:‘d) %(X'y) ea‘—“u-gl

mz= N+l ! ~-Z fm (L29) '

In the second summation j’ n is real and therefore as 2 - z' goes up all the
terms go Yo zero. We have, therefors, thal far away from the sou i
the Green's function becomes
T ’ 1 )
’ ! -
f ot ¥ (XA4) (%) eJPmlé S|
n=/ 24bm (L.30)

10

where N is the mmber of propagating modes. Further, let us see what the form
of G(P,P') is for large distances, in temms of the second representations.

We have
- (QE
Z N om 87
Lo GAP)= p 0l B g (P.P)

(4031)

and as e"JkR is finite (k is real) the first temm goes to zero. Hence we
get, therefore, that

G* (P,P') = g; (p’p:)
-0 e

-50 -
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camparing (L.32) with (4.30) we see that for large distances

A/ z 7 ., .
=) Zefa Y)Y gl 33 (1.33)
%ﬁc P /K74 -e/ﬁm

It is seen now how we can find the asymptotis valpes of g; for large distances.

It should also be moted that this expression (L+33) depends on the propagating
unattenuated modes. Referring back to the djgeussion in the introduction of

the question of radiation conditions and far ,q4pe fields, we see that this form

brings out this very difference. As We are yogking for an approximation, the
simplest assumption would be to take this fap yopne asymptotic form. This is
an assumption, and it gives us an approximation to the true Green's function.

It is a plausible approximation, and the resyjg support this point of view.

Tt may be worth pointing out here that gy (p. P') as chosen maies

G(P,F+) satisfy condition (2.10a) (2.10b) ang (» .10d) If it would have made
G(P,P!) satisfy (2.10c) too, everywhere it woyld be the rigorous g;(P,P').
However, it makes G(P,P') satisfy (2.10c) oMy on the wall in Whlch tha slob
is cut, and everwhere at & distance from the glot of the order of several
wavelengths, Although the order of error inyglved is not shown mathematically,
on the busis of these arguments, it is belieyeq to pe appreciably smaller then
the correction represented by the g;(PyP') which is used,

On the basis of this g3 we can now fipg /O[V()),;] o From (4.22),

noting that for a narrow sl ot y (JC,'Y) and \P (xlyl) are essentiany +he Sa:me‘q

we have

Al -5 b (*wa"”’”/” %

=

To find Yp we have to campute PY s ®p;. We have to differentiate this
expression twice with respect to z {(integrayjon with respect to z1). The
only part depending on 2z is the integral iy (L.35). Carrying out this compu-
tation® we find

*particulars on this transformation see in appendix (3).
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¢- 239}
(%gﬁyeo{ /)}90( a’ f/‘lﬂ( P I °/ (14036)

Having computed this we can now find the value of Y, to within this appraxi-
mation, By (h.8)

’ ml‘
%_J“‘/‘/mv ":;/;m e 7 2esfp)) YIG  wm

Hence we have

. tnlss .
¥e = Z ?"‘mky/ (xy)ev"“”.!/co:,a,,,; C’oséaj (1,.38)

ms) “GPm

From this, after some simple algebraic transformation, we find

Xm (xy)#° 2 .
ZW ( @/Mfzg/ﬁ%z) (1.3

m-/

As we have considered the case of a rectangular waveguide of sides 'a’
and 'v', and such that only TE,, modes propagate we have

7x _ e
Yo Rgg) = los 2= =y 2F (1.10)

Sbstituting this, am 2= (W( and A~ .ééi-’ , we find
finally for Y2
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N
o 2T 7,_4 oo (s ts L Infnl)
Vo= CerdBet Cum af Z’ e ( (Leli)

This I, can be considered as the internal admittance of the sict, It ine

deed givem the response of the slot in its relation to the provaget.ing modes,
As we pointed out before, I, gives a correction temm foi- tie atimmu‘tance.

We note fram (L.41) that it depends on the coordinate x through o3 —

That tells us that as the slot is moved away fram the wall x -{ g ’ the COr-
rection term decreases and finaliy at x = 2 disappears, This iz to be ey

2
pected as it is well known that the coupling of the slot to the propageting

TB;, mode goes dovm as the slot approaches the center. At the center the slot
effectively does notse the far zone field in the guide,
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By (2.29) and (2.30) we bave

o

J

Ity . . -
X'ruld not be sazy te write ancther cupamelon Puyr the Spsanip Ponebd on

t 'P (9

Vs

tione 1% .
& 1% on the walls of the rectsvgular wavwpnnie xbaide, Yowever, 1f we say
that
"
I

Py Lo the owtelde spacs, thav will satisfy the proper bowinsxy cowii-

G,(p P!) im the correct fmction thst presumably can bs found, we hive
&% oar disposal the knowledge of its asymptotic behavior at infinity. By the
Scmneri‘

. '
must gq i; . to zero at least as fuut atb %,. Hence from (l.L2). #e see that

,;/,’
3 B
it
' - N ., . P
real and e JKR is finite, ,;.,,*‘J
‘/

gﬂ

are to be satisfied with the zame order of aj;:-;:.r«:)xiu,

N Ao ug used
, 1 inside of the waveguide, we would take g (P,Bt} ev 'eﬁ there equal

w
g
o+
3
S
\

§ symptotic valoe a8 R «wap » We get therefore tho /W vain this ap-
proxiza; §i

don go(P,P!) =0 and Po 1¥(3), 3] =0 as weil,
clude 43 Py {@ }]

%2 3 result we con-
p_: "iat within our approximsticm

“S"C}),Q]i)’g).i (X Py Ja),,,,a' (heh2)

Netrgiarfprog oo iy

old radiation comdliticuy we lnes thalt as R goes to infinity Ge(‘i:"\.,l“"')

L, g P
W em AP} =0 (i
" i £—+oc ﬁ ( o &

Having computed Yz approximately, let us now find YB to the wame orden
Lof amrmcimatlon. From {L.9) we see that to find Y3 we must know the Dwction

/

/

—




It should be pointed out here that if we assumed an infinite plane outwid:
the wavegnida, the correct Green's function for the outside region would b=

e—,]kR .

wre g £

Therefore £e (P,P!'} would rigorously be equal to zero. This means that
with such an assumption 3‘;‘3 w O rigorsusly., Hence we see that assuming an
infinite plane outside shouid yi.'d the same results as obtained within our
approximation, From this discussiocn .* is also evident that adding finite
wings (plane) to the outside walls would wmuke the appfc-;‘_;.ma-bioq

the a ssumption that g °“(P9W?,1Q 2arg DesgeE Tl %o the physical condition.

nce would be observed if the slot were near the edge
of the w % wall, as the change in gemmetry occurs near the source point.

/’ xact has been chsexrver v us expersmentally., We found little difference
P

1 £
In particular, A AL fpnme

¢ us lomg as the slot was not at the wery edge of the wall, TFor slots at the

edge there was a noticeable difference in the scattering as measured inside.
For experimental reasons we had to have the slots at the edge of the wall N
and therefore decided to add small wings to the wall of the waveguide as a
plane conductor.

From (L4.6) we can now, by adding (L.18), (L.L1) and (L.LL), write the
function Y, in closed form.

1!". woo o ,',B (hohs)
where
' 2 MITX

A -
x g ROes” TET s 2 fon

(L.L6)

rm

(L.y7)

xf’:.oaz .ﬂ_z.'i’_xrm 7’_{,3/,7

w E
n
|-
’j\»
A
N
N
5’4
?'J
‘a
e ——————————— e T




In {}4,46) and (L.L7) we substituted £ = EZE . These

eazily evaluated as they involve only a finite summation,

w2 ghall see the numericd values in a double mode guide.
It should also be pointed out here that the fumection Y1

f
s éfcr a half wave
slot within our approximation is jndependent of the width of ¥ ) slot for rela-

tively narrow slots (see Chapter II). This is ture within tb ;s spproximation

for a half wave slot only. As can be seen from (2.11) and f/ 35} for a slob

of arbitrary length the induced voltage will be proportion,

I# . Op. Y7, to kz&fd o

¥ one evaluated the function Y, for a slot of arbitra: ./

‘ % length cne would
too would depend on the width d. The ‘/#/

. /Act that the function
zve slot is insensiti 1 /i
2 sl s i nsitive to the nidt}:?//s well demonstrated by

our experimental results vy =T
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CHAPTER V
SCATTRRING IN A DOGSLE MODE GUIDE

If we aubstitute expression ();.L,6) and {(-47) in (3.21) we obtain an ex~
pression for th: scattering coefficlent in cloged form

#
Se £F Dt g (o5 ‘& s T Cos il sty
ﬁ#" Cos” V”')( ﬁv

& *@Tﬂx 16 2 (‘
(e 'ﬂg e X e ﬁ' <~’/[s et AT " §

e

This expression is readily computed, However, it w

v WO
"A“”“&"'nl}' Por the ozes of 2 double mode smide, A

Vasw  wihanite

pute the func tim Iy
‘S:amg,m.l.ar guide that can propagate the TEjg and TEzo modes has been investigat-
ed experimentally 1 o Most of the experimental data have been taken from the
work reported b this Laboratory bei’ore(:l'7 18)

iet us ccnsider the values of (L.i6) and U.;.h?) first in a waveguide of
dimensions 8 = }06) cmy b = 1,016 cm. The operating frequency is 9375 .10500p,s,,
which corresponds to a free space wavelength of 3,2 cm, The length of the slots
was %- w 1.6 cm, The slots of varying width were cut at different distances
from the edge of the wall., It was found that the cross coupling between the
modes is rather small, To get reliable data within the experimental errors of
the system, it is necessary to tzke measurements with slots very close to the
edge of thewall, This is the casefor which we therefore propose to do the nu~

merical work, For this case we have x = o or a, and cos _Zx_na_tpi_ wl, Fora
wavelength of 3,2 cm we have
kel 196 (5.2)
2n | '
g - 1A (5.3)
and i
pa -ng-c - 1021 cm-l (Soh)




The sum in expression (L.L6) and ;.7 has two terms, due to the TEy, and
TEzo modes. let us compute them separately for the sake of clarity.
The first component gives for the real part

g7 A e 7 ,g, ar /.96 1,2 /393 4 o
atp, (R=-A7) Cos = goelo/é 180¢#0596 s /'3'2 o )

and for ine imaginary part

e ;6’
aﬂ; /g

L_ a7 /968 /. &o. ?o.f
2) Sim ”;c “qo6/0/6 /Bo#0596 St / /, 962

after the arithmetic we get
0,0866 + 30,710 (5.5)

The second component gives for the real part

/4 £ &7 51  E7 /.962 rél o°
at A(&’!A Cose ; " dgoelo/ée f2/-238 cos (/ )

and for the imaginary part

W=/ (962 <./ 12/
Joc oie Ter-238 V7 ( jage PP o)
This gives
0,66l + 30.979 (546)

Hence we find for the sum in (L.L6) the value of 0,752 and for the sum in

(4.46) the value of 1,69, From tables for the sine and cosine moegrale(z’) e
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find that T;{2v) = 2.L4 and 5;(2n) = 1,117, Substituting these values in
(L.L6) and (L.I7) we get

=ga/7r(" 44- 0.75) = _{_%972 (5.7)
and
O.273
B=gum (4 #/7-/.69) = s
(5.8)
Hence
Yo o (469~ §2€79) :
(5.9)

As was pointed out in Chapter IV, this function represents theadmittance
of a center fed slot. Its inverse would then give a function representing an
input impedance defined on the sama basis

. léoﬁ’z

%n B 169-J0.273

Z= = |2OTT (o 576+ jo.093)

(5.10)

Numerically this gives us for 2

Z = 681 + jl10 ohms
which indicates agreement vl th measured values for the radiation impedance of
center fed slets(lé).

It should be noted fram (5.5) and (5.6) that the contribution to the cor-
rection factor is mainly due to¢ the second mode. A close look at (L.L6) and
(heL7) will indicate that for an arbitrary number of modes only the last one
will contribute appreciably to Y. This is due to the fact that the propaga-
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tion constant of the lower modes are very close to k. The cosine and sire
approach -g- and v as P -»k, Only for the higher modes is B, apprecia-
bly different from k, and the correction terms are of importance., This al-
ready indicates that as far as the slot's behavioyr is concerned it effective-
1y sees only the higher mode,. This phenomena will be further demonstrated by
the reflections froem the slot,

By the expressions (3.21) and (5.10) we can now rewrite (5.1) in the

form
mTl‘x 5 -n-x
S m 7(1 576*.1 0.083) Reos T cos Cos(ﬁ”"go)é: ( so)
ta 2 In 'ﬁ-xﬁtp )
V/"ﬂﬂ’ Ih\ Fw (141

{5.11)

For slots at the edge of the wall Cosﬁ%lz—- = 1, and the dependance on the
x coordinate drops out. Suppose now that a wave of mode TEjg 1is incident.
The reflected wave in mode TE;, will be:

- 47 %(0-5761‘5—?.093) Co'sg -6900
S 4 B, (%*-¢2) (% %)

o _ 4w 1962(0.576+§0.093) 2 1.893 g o o
b 913 |.803 - ©0.535 Cosk /962 )
hence
- ‘-3 \
‘ S, =10 (998 +48) | o

The reflected wave in mode ’mzo will be
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4B \BATATAD)

S, = gr-1962 (o.576+ §o093) . C.I125+ ©.585 (5.18)
73 \.803-72T- 0595 2.38

hence
Sl2= ic ( 8+ 6{82) ().15)

Iet us suppose now that & wave of mode “5‘20 is incident on the slot.
The reflected wave in mode Tl‘.lo is incident, This symmetry is evident from

(5J1). Hence

AT Flo.576+ 40.093 o °

-3 .
S, =10 (1384 4 22) (5.5

47w Kl.576 93 2 e
See* 48 5 & é;‘“ L Cos (& 95°)

(5.16)
7 1968 (0. 576 ¢ 4'0.093)
S - d * d .56
€e 443 52/ - 2 38 0.565
' hence
1 S,p = /072(382 + je2) (.19

é’
The reflected wave in mode TE20 will be
As the waveguide is matched in both directions the =acattered field to

|



the right is the same as the scattered field to the left. Therefore the above
calculated coefficients are sufficient to determine the field everywhere.

To measure the amplitudes of the reflection coefficients we mweasure the .
power of the reflectcd waves, These are plotted in the graphs in terms of db.
below incident power. For the sake of camparison with the measured values let
us express the coefficient in terms of decivels, We get from (5 .13), (5 .15)
and {5.17) the following values:

Cwg 50w
811 20 (j?m 50 10
=» “'2601 db.

- - -3
S = S» 20?,0 1% 10

"'—.702 d_Do

-3
Sy,p = 20 %/o B5 10

= =8, db.

To campare with measured values let us write them in a table

, | ___Calculated db. —Measured db, |

Sll "'26 01 "27 Oh i 1 05

512 "'17 02. "18 07 i- 1 05

S "'17 02 "19 oo :tl 1 05
L2

8'22 - 8 oh "'10 02' -.t 1 05

From these values we can write now for the matrix (8) of a half wavelength
slot in a rectangular guide the following:




A)S + JO009 © 0.1L 4+ JC.02  =0,95 + j0.009  0.1h -+ jO.002

) 0.1l + JO.02 0y + 3006 0.1} + JO.02 0.6 + JO.06.
(8) (1) 95 + 0009 0. + j0.02 0,05 + jO0.009 0.1 # JO.O.
AL 4+ 3002 0.6 + 3006 0.1L + jO.02 0., + 30.06

We see therefore that the results are, within the experimental error, in
very good agreement., For the phase of the reflected amplitudes we have

'7" "/ "O. 093 - o
’0’/}? -O. 576 b /704 3

We find therefore, that the phase angle is ~170., The measured values are
-159° * 100.“ The agreement in phase is not so goed, but it is a characteris-
tie affair in radiation theory. The phase is sensitive to small changes in res-
onant length, It would be of interest to see the change in the function In
for slight changes in length.

Slots Very Close Tc Resonant Iength

Suppose that the length of the slot is slightly off the resonant length
1@: ‘;.-,25 o This may be due to machining errors, frequency errors, or pos-
sibly purposely introduced by the design. ILet us denote the length by 4 .
Assume the change in length is small, and of the order L =9, let us write,

RE= B+ x & (5.18)
hence —
S- Al &) _ Bad
= < =z
and
= s * xJd (5.19)

As we assumed 2 small change let us expand the relevant quantities in a
power series of ad . Equation (2.3)) will become, after expanding the opera-

e K SV(3), 5,47
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y v+ RV ___// Z’(V‘S‘l)ns!—% Z’(V?,@* ] (5.20)

Expanding the boundary condition V'( z Z) = 0 into a power series gives

’ "
VI(24)+0dv (20,)+2 (00)°V (24.)= O (5.22)
As in Chapter II, we look for a solution in terms of powers of x.
V= e e XV e - (5.22)

Substituting (5.22) into (5.20) we get a set of integro-differential equa-
tions, The solution for Vo' is as before, (2.37)

Sinfy
\{o' = &, )0(?) = (o {CDS Q'g (5.23)

To determine the amplitude, as in Chapter II, we multiply the equation

for Vi by \, and integrate from -¢ 75+ 4 . Instead of its being equal
to zero as in Chapter II, we find now

‘¢ .
SOV RV )ds = ehva? (5.20)
-l i -

Integrating the right side . will give us an expression for Coe We get
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il
. Lo ¥(Sidy : (5.25)

AT

We recognize immediately that the denaminator in (5.25) is the new aduit-
tance function. The integral-expression is identical with the.functicn oYn
we have considered in Chapiér IV, We see therefore, that the change is only -
in the imagirary part of the admittsnce. The real part is invariant to slight
changes in length., If we rewrite the reactive part, frem (l.L7) and (5.25),

we get after substitution of & = “e Raldilr Rd

Beas( LX) <;,,,/rs.

T .
(/8 R s ¥, 7 ~
B-W{J(em L YATR ¥ 32 +4£4m£ay (5.26)

lat us see what the order of reactance change is from the correction term
1 af &p Fd . For a slot with a width of 0,030" we have

In 0.048 = - 4.02

-

ARl G Rd = -3/, 55 64

For a change in length of 0,001" we have ol = 2.51 10™3 cm, and the
change in reactance is ~0.08, Adding this to values in (5.9) we now get

- ==t (168~ jo.35)
and the phase angle will now be -168°, This is closer to the measured values.
It should be remembered that the accuracy of the measurement of phase is
poor, In addition, from above it is seen that the phase is sensitive to slot

length, and hence to frequency changes. For example, a change of 5 Mc.p.s. in
10,000 represents a change of the order of 0,001" in terms of slot length.
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F\lrbher, the theory neglects the effects at the edges. We have neilected

E, (m,%) in comparison with E n (m, 9), but at the edges of the slct B .m,f)
goes to zero, whereas E (m,g) is the component that does not have to disappear
there. As we have seen that the phase is rather sensitive to the length of the
8let, we should expect this edge effect to influence the phase results. Am-
othuwr fachor which has been neglected is the finite thickness of the guide wzll.
To check the effect of slight changes in slot length, the phase as a function
of frequency has been measured, The frequency varies over a sriall range. arcurd
the rcorrect®™ frequency of 9375 MC. The results are plotted in Fig. 9. It
ca: be seen from the experimental curve that for slight changes in-frequency,
thore are rather appreciable changes in phase, With #11 these factors in ming
thr, agreement in phase between the theoretical and experimeniial results is
railiar good,

Dismasion of *&m Experiments

The experimental set up has been described before(16/ » A schematic dia-
gram is shom in Fig, 10, The principal unit is-a mode trunsducer, designed so
as to excite separately and independently either mode Tl’lo or mode TEZO in
wo double mode guide, In & former pa.per(”) we have showm the validity of
measuring the scattering coefficient through such a travsducer. This has been
chomn to be true only if the transducer is matched in erery divection. Any devi-
ation fram the match will result in experimental errors, This sensitivity to
# match in four ways results in a system which is rathar freguaney sensitive,
Although care was taken in the matching work. the & vomusay oif ‘t}hﬂ evs‘mm ir
limited, The measuring equipment empliysd would yie d resud w withnliy = x- ch in
amplitude and 5 degrees in phase. We Yure [ouau, h'wevor, Hhat the acouracy
in amplitude is only within 1.5 db and the phese ervoes are about 15 degrees.
The reliability of the phase measurements, in particular, is below what might
e considered desirable., This is due to the sensitivity of the system to the
Jointe in the microwave plumbing, and the fact that the measuring procedurs
required moving these joints. Thz elimination of cables, and the use of wave-
guides with rotatirg joints has improved that part considerably. The amplitudes
and phases were measured in two weyz, In the reflected wave region the method
employed was the Voltage Standing ¥iwe Ratio, and in the transmitted region, a
magie T bdridge with a campensatin; attermator and phase shifter for balancing
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culdn in /e to the axis of the guide and located on the broad face of the
rectangular guide propagating the TE,, and TE,; modes & ulob

b/ks uninly with the higher mode, This will be the case for any mamber
‘des,. If a slot iz to be used as a radiator, the mode to launch in the

ia the highest one possible. This will give the neximm radiation power,
Fg: r4om expression (5.1) it can be r that the season for Whis behavicr 8 the
y’il_:' L that tne gride wavalength i@ lower modes is close to the free spsce wave-
Lyngth,  The factor Coszﬁ l is very close to zero., Realizing that, 1L is evi-
dunty that slots could be used as a means of separating the mcdes,

51though the expressions derived here are for a resonant slot, they indi-
cut2 the behavior of slots in general., We have seen that for smaii chsnges in
l.ungth the resistive part is invariant. It can be safely assumed thzi the
gunpral character of slots of length not too different from the resoma~t length
wordd ot e appreciably different frow what we found for the resonant length.
tne cmn thaa Jind such a length of lonyitudinal slot that will interast with
sw wode only. As such, these slots would serve as mods geparitors. tme could
adso have two slots arranged so that one interacts with one mede and the other
with the secend mode, This could be applisd of course, ¢ amr murhsr »f mouss
and slots., Such an arrangement will serve as 4 launcher, or a receiving filter,
for a multiplex syatem. Svery mode can be made to eurwy another messige in the
same waveguide.

From the theory developed here we can arrive at some idea for investigating
scattered fields in general. The major part of the information is derivable
from the singularity of the source functiong. From the theory of funstions this
is to be expected. Nevertheless, this way cf attack has heen neglected in com~
parison with the modal expansion methed. The modal expansion method 2an claim
mord rigour in writing out a formal solution, If no recourse is taken to approxi-
mation procedures, it gives a solution in temms of infinite series. In most
cases the convergence of these series leaves much to be desired. It would pz;obab]y

QAT Tamat




be fruitful to investigate the region of singularity first. For electramag-
netic fields the singularity of the source functions is well known, and its
location is in the region of integration. Separating it out, and treating

it separately will give the major part of the wanted.information. The special
nature of the region of interest can then be introduced as a correction, or a
refinement of the information derived froam the singularity.

Sugpestions for Further a

Several problems amenable to treatment by the outlined method present
themselves. In principle there is no difficulty in 'extending the method pre-
gented here to slots of arbitrary length. It will involve a more camplicated
integration, but this could be evaluated either approximately or rigorously.
One would also want to know in detail the behavior of slots at an arbtitrary
angls to the direction of propagation. Another important problem in the de-
sign of slot &rrays is the interaction of adjacent slots., With the expressions
for the voltage induced in a slot by an arbitrary exciting field this problem
could be solved without much difficulty. A class of problems of a little dif-
ferent nature are diffraction problems in free space, It would be of interest
to apply the outlined method to the problems of diffraction.
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APPENDIX 1

In the transformation leading to equation (1.18) the following is required.
& f / e xhl -exh
x - e,x v ol
( -4 =4 ") Q_’lua’ (AL.1)

Referring to (1.17) and (1.18) we get
- + + -
;.’//( LxB = e f ) mde (A1.2)

Consider the first term under the integral. For the cross product of the

vector mode functions we have from {1.8)

JI1E L0 dudy [ By - iy e ey =
////j/— 4E3 au]//z’_“_ ¥ I 3y =
//&2'/(5‘?%)&-* (Bé;u)z/"dxgé, - £ (12.3)

With similar substitutions we find for the second term in (Al,2)

/ / ' x¥.m doa'?/ Z'P:T (AL.L)

Adding these two we find that

Z}_, = 'é@;z' = & (41.5)

In a similar fashion one can find that when direction of nommal vector
is reversed, we get for the integral over the cross-section thevalue of (-2).
With the help of such relations the indicated evaluation ia Chapter I can be

carried out,
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APPENDIX 2

To compute the transformation from (L.13) to (lj.1}) consider the expression

"o e 2 2\ [r® RSO VIIRCIEY ) [ 2%
Urk 2(=,/§)314'R )[41»&(;-3 )[P(; )+Jﬁfg)]e oy’ —

£ p : -fR(s"
[beegafr o-jersfe Py

(A2.1)

Each of the two integrals in (A2.1) is regular, and we can differentiate them
as functions of 2z-. We have

.2 ¢ '
Yo' = + Q (3-3) ‘
33 4 F(3.3)dy = F().3)- 4./ %—3—49 (42.2)

and we have to evaluate the integrals in (A2-2)., For this purpose we introduce
transformations as follows: :

dn 2R(3-3")=U(3.3)

(a2.3)

Lr 2R (5°3)= U2 (3.5)

and note that
QW __du . % _ %
b} 3);, ) a;‘ A;’l .
Tu . (t2.0)
"—~1= - 2_2_’;‘2. 5 ; 2(?.= sz

T
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Turther denote
o Jkfz=z') = £ (z,2") (82..5)

oJk(zts) = I, (5,2')

and note that
. d . Y. 3F
R T T (2.6)

Eiz= _ g_i:. ‘ 31)7: - Dmf,,
33 33 ) o3 i Y

Also substitute

9 ()2 4A7(5) = 6, Q) e
We csn write now
2(”+ fz.u -/ (;) - [&@) (42.8)
where |

Fl
S 09 (15 P G5
Ll HNGPR G PG D

and

V4
128 P XYY ACRI ¥
L2 ()) {(ay £ )[ul(}; A 99)/3(9 )/d/+ Ae () (k2.10)
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Consider Il(z)

4,()-H, /<a;»;m 2% 3 jm. 3P K303

(az.11)

Bu (A2, h) and(A2.6) we can rewrite this in the form

/( 52,1?*' bué;‘:p zb)zp ﬂzuilﬂ)d)':

2 (2 -9 YA L )
.f[%"(a;""”) 39.(261;?.)35.%,(%%,3 REZLI

(A2.,11a)

The first and third term can be tiaken out of the integial directly., The
second term we integrate by parts., Thus we get

4 (-N> ‘W'gf/ % 2 P/ % 9P/3/(u,;. 3"*3 u.g.ﬁgg%a)

e

In & similar fashion we can treat In(z). We then get

£)els'

A 4203) /V, ‘D""‘ f’/ le-/ le{z;//izﬁ%i* £t (42.13)

Substituting back from (A2,3), (A2.5) and (A2,7) and Y (t€)z0 we tind
* that
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L -dy= (;') 'J“(‘Q*a) P (30 et Taars + f?-!)&zkm ;)e‘* NC

Pl 2ty € °"‘/ Drenig5)@ et AR bty

.e " 4 ”n
-/.b: 2((}’-9)4;‘;8(‘3 3_’[3’”-%)” + K f‘fea}”]d‘;
¥/

(A2.15)
Tn our case we have
(/(9‘) _ Cos(} (A:z'.15)
hence
y"(-l#/‘ ; P (,,g).—.-f as ﬂ,gz‘ (42,16)
and
y//_(z;j) =0 (x2.17)
Further in our case
GR35 ( Plekip)=o (12.28)
and .
t i[5 R (3]0 (12.29)
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3 , K. a
Substituting (A2.10) to (A2.19) in (A2.1l) and adding the integrate
terms from (A2,2) we find

e-olg(l-#‘}) e»diae(—(-;)
+
243

%" Au- f/ j:;“ -/ (42.20)

which is expression (l.1)) used in text.

w
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APPENDIX 3

The transformation from (4.35) to (4.36) invalves computation of the ex~

pression
-;[ m 22
( m(’ )S/e ,1/3 ¢ )’())69 ’? (A3.1)
where
P (3) = /’-""; (A3.2)

To compute this we separate thie integral into two parts and write

(e # )/ o boshaity. “(a R e S gty
>

J (83.3)

Each of these two integrals can o; eva..uated directly. We have

/eJﬁ('}J y, d; Jﬂ} é' (4'36'05&,; +RSunxy /

)ez"/ﬁa

K _ e O0n M

Further

J(; ;) 2k d/./ﬁ» —,lex}J[B;O‘&Siz'"%s‘f“ '<«'§/ -JP3
'J

(43,5)

- -

;
=




This can bz souputed dlrectly. We get

JFUU;) 2-3
/2 JI3( XH WLE:: w‘; +

( ‘(i+;’;+ e,\;ﬁ(!{-;)\ 2R gkt

{i 4

w EJET o ‘
o :é'r_-gf- Los R}. ]

"‘n

Simply adding up the terms will give us
84+ w(4-3)

Which is the expression given in the text.
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